


Making a car drive itself
How to prepare for FS-AI

Ignat Georgiev and Oliver Day

Learn to Win
09/11/2018



Agenda

• The challenge

• Why you should do it

• Founding a team

• Technical aspects

• Software tools, development strategies and testing

• Tips for competition



Self-driving cars today

• Emerging industry set to revolutionise transport in the next decade

• Blend between engineering and computer science





The FS-AI challenge

• Create a FS car that can drive itself

• Split into two categories:

DDT ADS



Why should you join?

• Exciting and innovative

• Actively contribute to the field

• Get hands-on experience

• Make a career out of it

• Fun "Self-driving cars industry in 
the UK will be worth £28 billion 

in the next 17 years."
- WIRED UK

https://www.wired.co.uk/article/driverless-cars-uk-self-driving-cars



Founding a team

• Multi-disciplinary team

• Bridge the gap between your Engineering and CS departments

• Autonomous cars aren't cheap – start with a simulation

• Find academics to support you

• Start small (<10 people) until you figure out what you need to do

• ADS and DDT can be developed in parallel. Software can be made to 
be applicable to both



Integrating to your existing FS team

• Share your old platform

• Share knowledge and skills
• But set clear boundaries at the beginning of the year

• Share resources – tools, workshops, transportation, etc.

• Things to consider
• Recruitment conflicts
• Sponsors conflicts
• Operations and events
• Budgeting and sharing resources
• Team identity – social media, newsletters, etc.



Management

• Keep developers focused – have people to deal solely with 
operations, events, financials

• Tight communication between subteams

• Plan the year ahead

• Regular review of progress

• Balance between engagement and hard work



Technical



Sensors



Lidars

• High accuracy

• High output rate

• Output point cloud
• Expensive

• Fragile

Types:
• Planar
• Multi-beam
• Image-like
• Solid-state



Cameras

• High output rate
• Lots of data
• Versatile
• Cheap
• Computationally expensive
• Huge variety – choose carefully

Types:
• Monocular
• Stereo



IMU and GPS

• Huge variety!

• Estimate location in 3D space

• From 5$ to 5,000$

• Quality varies greatly

• You can get standalone IMU and GPS

• You can get integrated INS (IMU+GPS)

• You can also get RTK GPS



Computing

• Process intensive tasks

• Desktop PC vs industrial computers

• Arm64 vs x86

• Difficult to estimate how much power you 
need. To be safe go with more than you 
need right now

• Distributed computing

• Dedicated computers

• Strap a laptop first before you buy PCs



System overview



Perception

• Extracting meaningful information from sensors

• ie. from sensor data figure out where the track is

• What's a cone and where are they relative to the 
car (in 3D)?

• Could also be pedestrian detection as safety 
feature

LiDAR 

Extract 3D cone locations

Estimate track boundaries

Onto planning / control and 
localisation / mapping...

Camera

Detect cones 



Perception (LiDAR)

• Process LiDAR:
• Down sample

• Extract ground plane

• Limit interested region eg. Heights

• Cone detection in 3D:
• Euclidean clustering – basic approach

• Feature matching eg. corners, edges

• CNNs for pointclouds – get the 
algorithm to learn the features



Perception (Camera)

• Process camera:
• Compression?
• Grayscale?

• Detect cones:
• Colour thresholding and tracking
• Feature matching eg. SIFT
• CNN object detection (YOLO) - get the 

algorithm to learn the feature matching

• 3D location:
• Structure from stereo
• Structure from motion
• LiDAR – Camera calibration

• Drivable area / track segmentation



Localisation and Mapping

• First time we go around the unknown 
track we use only sensor data

• Let's use this to build up a map or model 
of the track and determine car's position 

• Helps us to plan what's coming up when 
we see it again



Localisation and Mapping

• What to record in our map?
• SLAM – Simultaneous Localisation and 

Mapping

• Dense SLAM eg. ORB-SLAM
• Maps more general features eg. Edges, lines
• More information stored for localisation

• Landmark based SLAM eg. EKF SLAM
• Maps only what we need - cone locations in 

3D
• Depends on cone extraction eg. From LiDAR

• Also 2D approaches mapping in ground plane



Localisation and Mapping

• Localisation - Have to locate car in the map in order to plan

• Effector noise eg. friction

• Odometry sensor noise

• Better localisation estimates by fusing IMU, GPS, odometry 
etc.

• But still error prone

• Solution: relocalise by matching sensor data to that 
expected based on map

• Probabilistic framework formalises uncertainty and belief 
states



Path planning and Control

Local planning

Plan a trajectory and follow it only 
on immediate input data

Global planning

Once you have a full map of the 
track, can you optimise to go 
faster?

https://autorally.github.io/



Local planning

• No view of the whole track – must be 
conservative

• Can use traditional robotics map planners
• Based on map

• Usually safe and non-dynamic

• Eg – A*

• Constrained environment – can make a 
specialised local planner

• Eg. - midpoints of track



Global planning

Now that you have a map:

• Can you optimise a better trajectory?

• How can you process your map data?

• Hit all apexes?

• Take into account vehicle dynamics?

• How feasible is that path for the car to 
follow?



Control

• Once you have a trajectory, how can the car follow it?

• Software engineers can assume the car is a black box:
• Steering

• Speed

• Torque

• Hardware engineers should:
• Simplify control

• Make it reliable



Control algorithms

• PID Controller
• Trivial

• Doesn't forward sample

• Doesn't take into account dynamics model

• MPC Controller
• Forward samples and optimises control

• Based on costing

• Requires knowledge of the dynamics of the car

https://openi.nlm.nih.gov/detailedresult.php?img=PMC2784347_cc8023-1&req=4



AI and Machine Learning

• Use breakthroughs in deep and reinforcement learning to 
control the car

• End to end – camera image input directly to control 
outputs

• Imitation learning 
• Record a human driving, model learns to copy the expert

• Reinforcement learning 
• Model has a go and given feedback on it's performance

• eg. How far it got round track

Camera

Speed control

Agent (the bit that learns)

Steering control



Software tools, development and testing

• Middleware software eg. ROS
• Message-passing between processes

• Implementation of commonly used functionality

• Package management

• "Nodes" (programs) in most programming languages –
C++, Python, MATLAB etc.

• Repo management eg. GitLab
• Code reviews

• Software testing – continuous integration

• Version control



Software tools, development and testing
• Simulation for developing algorithms / ideas eg. Gazebo

• Ours (with FSUK DDT car model) is open sourced:

• https://github.com/eufsa/eufs_sim

• https://github.com/Microsoft/AirSim/wiki/technion

• You can develop a small-scale testing platform that can be 
tested anywhere(eg. a wheelchair)

• Datasets for verifying and evaluation on more realistic 
data:

• Ours on wheelchair and from 2018 FSUK competition 
is shared:

• https://github.com/eufsa/datasets

• https://github.com/AMZ-Driverless/fsd-resources

https://github.com/eufsa/eufs_sim
https://github.com/Microsoft/AirSim/wiki/technion
https://github.com/eufsa/datasets
https://github.com/AMZ-Driverless/fsd-resources


To prepare for the competition

• There are a lot of cool things you can do but always justify why you 
are doing them!

• Always think of how you can generalise your solution! 90% of the 
things you do on the car is also being done in industry right now

• Have clearly defined tasks for all members attending

• Have a cool Plan A
• But if that fails be prepared with Plan B



Problems

• It's FS – problems are always around the corner

• Good idea to already have redundancy

• Draw up a list of things that can go wrong – they probably will!



Sponsors & QA


